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The study aimed to clarify the potential immune-related targets and mechanisms of Qingyihuaji Formula (QYHJ) against
pancreatic cancer (PC) through network pharmacology and weighted gene co-expression network analysis (WGCNA). Active
ingredients of herbs in QYHJ were identified by the TCMSP database. Then, the putative targets of active ingredients were
predicted with SwissTargetPrediction and the STITCH databases. The expression profiles of GSE32676 were downloaded from
the GEO database. WGCNA was used to identify the co-expression modules. Besides, the putative targets, immune-related
targets, and the critical module genes were mapped with the specific disease to select the overlapped genes (OGEs). Functional
enrichment analysis of putative targets and OGEs was conducted. The overall survival (OS) analysis of OGEs was investigated
using the Kaplan-Meier plotter. The relative expression and methylation levels of OGEs were detected in UALCAN, human
protein atlas (HPA), Oncomine, DiseaseMeth version 2.0 and, MEXPRESS database, respectively. Gene set enrichment analysis
(GSEA) was conducted to elucidate the key pathways of highly-expressed OGEs further. OS analyses found that 12 up-regulated
OGEs, including CDK1, PLD1, MET, F2RL1, XDH, NEK2, TOP2A, NQO1, CCND1, PTK6, CTSE, and ERBB2 that could be
utilized as potential diagnostic indicators for PC. Further, methylation analyses suggested that the abnormal up-regulation of
these OGEs probably resulted from hypomethylation, and GSEA revealed the genes markedly related to cell cycle and
proliferation of PC. This study identified CDK1, PLD1, MET, F2RL1, XDH, NEK2, TOP2A, NQO1, CCND1, PTK6, CTSE, and
ERBB2 might be used as reliable immune-related biomarkers for prognosis of PC, which may be essential immunotherapies
targets of QYHJ.

1. Introduction

Pancreatic cancer (PC) is the most common cause of cancer
mortality globally, which causes an estimated 227,000 deaths
per year [1] and more than 52% cases with a 5-year survival
rate of less than 5% at a distant stage [2, 3]. Pancreatic ductal
adenocarcinoma (PDAC) is one of the most common histo-
logical types of the exocrine pancreas and accounts for 95%
of all PC patients [4], which had been characterized by local

invasion and even distant metastasis at the initial diagnosis
because its clinical presentation is lack of specific biomarkers.
In the past few decades, though the several diagnostic tools
have emerged. Surgical resection is known as the only poten-
tially curative therapy in patients with PDAC, but only less
than 20% of the patients are eligible for tumor resection [5].
Despite receiving curative resection, the cancer relapse can
lead to metastatic disease that directly results in an ominous
prognosis. Additionally, the pathogenesis of PDAC at the
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molecular level remains unsubstantial. Currently, part of the
tumor markers has been strictly identified to suggest the
prognosis of patients with PDAC [3, 6]. Consequently, the
promising therapeutic avenues and the novel immune-
related biomarkers with increased specificity for early diag-
nosis are urgently needed.

Traditional Chinese medicine (TCM) is one of the historic
medical systems, which has been utilized in China for 3000
years [7]. Accumulating evidence suggested that TCM con-
tributes to treating multifarious diseases, including malignan-
cies [8, 9]. The novel TCM formula Qingyihuaji (QYHJ) is
produced by professor Luming Liu, which composed of Banz-
hilian (Herba Scutellariae Barbatae, HSB), Baihuasheshecao
(HerbaHedyotdis, HBHY), Tiannanxing (Rhizoma Arisaema-
tis erubescentis, RAE), Jiaogulan (Herba seu Radix Gynostem-
matis pentaphylli, HSRGP), and Doukou (Fructus Amomi
Rotundus, FAR), which was widely used for the treatment of
PC during the past decades [10–12]. Besides, our previous
clinical studies suggested that QYHJ treatment combined
with first-line clinical western medicine improves the survival
of PC patients with liver metastases [11, 13]. Thus, QYHJ
might be an innovative therapeutic avenue for PC; neverthe-
less, its pharmacological action has not been fully clarified.

Increasing literature supports a vital role in the immune
system in PDAC initiation and development. Chinese herbal
formulae are considered as multitarget and multicompo-
nent characteristics that utilizing its active components to
regulate the immune and body systems [14]. Therefore, a
new perspective is required to explore and explain the
mechanism of QYHJ systematically and comprehensively.
Recently, big data bioinformatics of molecular targets has
gained more attention. The public databases, including
The Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO), favoring researchers to conduct data min-
ing for the identification of novel genomic targets for thera-
peutic intervention of PDAC. Moreover, many studies have
proven that network pharmacology is a practical approach
for drug target prediction from the “multiple targets” per-
spective to investigate the macro-regulation of TCM [15].
Simultaneously, WGCNA, a systems biology method, is pro-
verbially used in cancers [16]. More importantly, WGCNA, a
novel systems biology-based avenue, is widely used in high-
throughput microarray since it can identify the specific co-
expression modules that associated with the clinical traits
for screening out the biomarkers to improve the diagnosis
and therapy of cancers in clinical practice [17].

In the current study, network pharmacology was used to
identify the special compounds of herbs in QYHJ. The puta-
tive targets of these compounds were acquired from the pub-
licly available platforms. Using the GEO database, WGCNA
was conducted on the PDAC gene expression file to identify
gene co-expression modules that related to the pathological
stage and explore the potential hub genes. Then, we used
integrated bioinformatics methods to investigate the func-
tional and pathway enrichment of putative targets and the
overlapped hub genes. Besides, MEXPRESS and DiseaseMeth
2.0 were utilized to assess the methylation status of those hub
genes, while Gene Set Enrichment Analysis (GSEA) was
employed to explore potential biological functions. This

study aimed to uncover the potential candidate biomarkers
and targets of QYHJ for PC treatment, which also supplies
a precious chance for a preliminary exploration of the path-
ogenesis in PDAC.

2. Materials and Methods

2.1. Collection of Chemical Ingredients in QYHJ. Compound
information of herbs in QYHJ was acquired from Tradi-
tional Chinese Medicine Systems Pharmacology Database
and Analysis Platform [18] (TCMSP, http://tcmspw.com/
tcmsp.php), which provides a chemical pharmacokinetic
property based on absorption, distribution, metabolism,
and excretion (ADME) parameters. In the TCMSP server,
the active ingredients of each herbal medicine in QYHJ were
mainly filtered by integrating the pharmacokinetic properties
comprising oral bioavailability (OB) ⩾30%, drug-likeness
(DL) ⩾0.18 [19], as well as half-life (HL)⩾4h. OB prescreen-
ing is employed to estimate an orally administered dose of
unchanged drug that reaches the systemic circulation in
TCM remedy, which reveals the convergence of the ADME
process. DL is a qualitative concept used in drug design to
assess whether a compound is chemically suitable for the
drug. The ‘drug-like’ level of the compounds is 0.18, which
is used as a selection criterion for the ‘drug-like’ compounds
in the traditional Chinese herbs. Drug HL (t1/2), which
defined as “the time taken for the amount of compound in
the body to fall by half”, which is the most central property
as it dictates the timescale of treatment. In this study, the
active ingredients were selected for further analysis when
they met both of these criteria. Next, the 2D structure of
the active ingredients was collected from the PubChem data-
base (https://pubchem.ncbi.nlm.nih.gov/); Draw them with
ChemBioDraw Ultra 14.0 software and save as an “sdf” file
format. Then, the 2D structure was converted to the simpli-
fied molecular-input entry specification (SMILES) file using
Open Babel GUI software.

2.2. Targets Prediction of QYHJ. The SwissTargetPrediction
(http://www.swisstargetprediction.ch/), an online tool, allows
the user to assess the most probable macromolecular targets
of a small molecule-based on a combination of 2D and 3D
chemical similarity [20]. Similarly, STITCH (http://stitch
.embl.de/), a free public web-server, has been used extensively
in TCM to investigate the molecular mechanism of the poten-
tial effective components according to text mining and molec-
ular docking methods [21]. The SMILES information of the
active ingredients was imported into the SwissTargetPredic-
tion and the STITCH databases, respectively. The probability
value of each potential target listed in SwissTargetPrediction
database was used to investigate the accuracy of the current
predictions, whose probability value ≥0.1 was identified in this
study; additionally, the potential target proteins with confi-
dence score≥7 in the STITCH databases were collected as
putative targets of QYHJ [22]. Generally, we obtained 675
putative targets when integrating redundant data.

2.3. Identification of PDAC and Immune-Related Genes. The
target genes related to PDAC were collected from the
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GeneCards database (https://www.genecards.org/), which is
an integrative database that provides user-friendly informa-
tion on all annotated and predicted human genes by automat-
ically integrates gene-centric data from ~150 web sources [23].
The keyword “Pancreatic ductal adenocarcinoma” and
“Immune” were used in the GeneCards database to search
for PDAC-/Immune-related targets, respectively, and finally
obtained a total of 3,208 and 15,877 genes related to PDAC
and Immune, respectively, from the database (Table 1S and
Table 2S).

2.4. PDAC Microarray Data Collection and Data Processing.
GEO is a public functional genomics data repository, in
which the gene expression profile was selected for the current
study. We used the keyword “Pancreatic ductal adenocar-
cinoma” OR “PDAC” AND “Homo sapiens” (Organisms)
AND “Expression profiling by array”(Filter), and then corre-
sponding datasets were screened with the following inclusion
criteria including pancreas tissue and non-malignant pan-
creas samples used as controls. The gene expression data of
GSE32676 was downloaded from the GEO database. The
platform of dataset GSE32676 is the GPL570 (HG-U133_
Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array,
which includes twenty-five human pancreatic tumor and
seven non-malignant pancreas samples, and was used to per-
formWGCNA for identifying hub model genes in this study.
Furthermore, the GEO2R is an interactive web tool based on
the GEOquery and limma R packages from the Bioconductor
project. To identify DEGs, |log2FC|> 1 and P< 0.05 were set
as cutoff criteria.

2.5. Co-Expression Network Construction. The expression
data of all genes in the GSE32676 was used to identify the sig-
nificant gene modules using the WGCNA package in R [24].
A weighted adjacency matrix was constructed using a power
function amn= |cmn|

β (cmn=Pearson’s correlation between
gene m and gene n; amn= adjacency between gene m and
gene n). An appropriate β value was selected to increase the
similarity matrix and construct a scale-free co-expression
network. Next, the adjacency matrix was transformed into a
topological overlap matrix (TOM). The dynamic tree cut
algorithm was applied to detect gene modules. Here, we
selected soft-thresholding power as 8 (scale-free R2= 0.85),
and minimal module size as 30 to identify hub modules. To
investigate the connections between gene modules and clini-
cal properties of PDAC, the relationships between the mod-
ule eigengenes and clinical features were calculated. Gene
significance (GS) and module membership (MM) were
defined by the correlation coefficient of each module eigen-
gene and each trait, respectively. In general, modules with a
higher Pearson’s correlation coefficient have more clinical
significance. Among genes of active ingredients, GeneCards,
and significant module, the overlapped genes (OGEs) were
analyzed with Venn diagrams by Venny 2.1 (http://bioinfogp.
cnb.csic.es/tools/venny/).

2.6. Visualization of Gene Expression Patterns and
Chromosome Locations. “RCircos” (R package) was used to

reveal the expression patterns and chromosomal locations
of the 18 OGEs from Venn diagrams analysis.

2.7. Functional Enrichment Analysis and Protein-Protein
Interaction (PPI) Network. Gene ontology (GO) and KEGG
enrichment analysis of active ingredients related putative tar-
gets and the OGEs, respectively, were performed using the
Metascape database (http://metascape.org/), which is a gene
annotation and analysis resource [25]. P-value< 0.05 was set
as the cut-off criteria to identify the outstanding GO terms
and KEGG pathways and visualized by bubble diagram or
“GOplot” (R package). To estimate the interactive associa-
tions among the OGEs, meanwhile, the PPI network of 18
shared genes was established by using the STRING (http://
string-db.org), which is a database of known and predicted
protein-protein interactions [26].

2.8. Survival Analysis of OGEs. Kaplan Meier plotter (http://
kmplot.com/) is an online tool for interactively investigating
survival correlations, which is capable of assessing the effect
of 54 k genes on survival in 21 cancer types [27]. To assess
the clinical significance of OGEs, the PDAC patients were
divided into high and low expression groups. The overall sur-
vival (OS) of the two groups was assessed by Kaplan-Meier
plots and log-rank P-value, log-rank P-value< 0.05 was the
cut-off criterion, and the number-at-risk is visualized below
the curves.

2.9. Exploration of the mRNA, Protein andMethylation Levels
of OGEs. To further confirm the mRNA and protein level
of OGEs in PDAC, we examined the relative mRNA
expression of there genes in the UALCAN and Oncomine
database. In addition, the protein expression and distribu-
tion of OGEs were investigated in PC tissues and compared
normal tissues in The Human Protein Atlas (HPA, version:
18.1) database (https://www.proteinatlas.org/), which aim to
map all the human proteins in cells, tissues, and organs [28].
UALCAN (http://ualcan.path.uab.edu) is a comprehensive,
user-friendly, and interactive web resource to allow users to
identify biomarkers in silico validation of potential genes of
interest [29]. Oncomine 4.5 (https://www.oncomine.org/), a
cancer microarray database and online data-mining plat-
form, contributes to discovering novel genes associated with
the progression of tumors [30]. In this study, we estimated
the mRNA relative expression of OGEs in the UALCAN
and Oncomine database, and P< 0.05 and a fold change of
2 were considered as statistically significant.

Furthermore, the human disease methylation database,
DiseaseMeth version 2.0 (http://bio-bigdata.hrbmu.edu.cn/
diseasemeth/), a web-based resource focused on the aberrant
methylomes of human diseases [31], was utilized to compare
methylation levels of OGEs between the pancreatic adeno-
carcinoma and paraneoplastic control tissues. Additionally,
we also investigated the relationship between OGEs expres-
sion levels and their DNA methylation status using MEX-
PRESS (http://mexpress.be) [32], an online tool contains
the latest TCGA data, clinical data and so on.

2.10. GSEA. GSEA, a computational method derives its
power by centering on gene sets, that is, groups of genes that
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share similar biological characteristics, which performs bio-
logical information from a new perspective [33]. In data set
GSE32676, samples of PDAC were separated into high
expression groups and low expression groups based on the
median expression of the overlapped up-regulated-genes,
respectively. JAVA GSEA 3.0 (http://software.broadinstitute
.org/gsea/index.jsp) was used in the present study to conduct
GSEA. The biologically defined gene sets “c2.cp.kegg.v6.2.-
symbols.gmt”, was used as the reference gene.

2.11. Statistical Analysis. Overall survival curves were calcu-
lated by the Kaplan-Meier method and analyzed by the log-
rank test. The WGCNA was carried out with “WGCNA.”
The R 3.5.1 (64-bit) was used in this study. A P< 0.05 was
considered statistically significant.

3. Results

3.1. Screening of the Active Ingredients in QYHJ. In the cur-
rent study, we have conducted a multi-dimensional analysis
to identify potential biomarkers of PDAC and targets of
QYHJ by integrated bioinformatics methods in PDAC. The
flow chart of our analysis is displayed in Figure 1. First,
123, 94, 37, 202, and 71 compounds of five medicinal herbs,
RAE, HSB, HBHY, HSRGP, and FAR in QYHJ, respectively,
were retrieved from TCMSP. Based on the screening criteria,

there are 6 active components in RAE, 29 active components
in HSB, 7 active components in HBHY, 15 active compo-
nents in HSRGP, and 10 active components in FAR, respec-
tively. The specific ADME parameters and the SMILES
information of aforementioned the 67 selected active ingredi-
ents are shown in Table 3S.

3.2. Putative Targets Prediction in QYHJ. Putative targets
were predicted by a combination of SwissTargetPrediction
and STITCH servers. Consequently, We identified 220 candi-
date targets in RAE, 342 candidate targets in HSB, 309 candi-
date targets in HBHY, 302 candidate targets in HSRGP, and
446 candidate targets in FAR, respectively. Next, a total of
675 putative targets were collected from 67 compounds after
eliminating the redundancy, which was objects of the study
for subsequent analysis and visualized as the ingredients-
targets network by Cytoscape (Figure S1).

3.3. Functional Enrichment Analysis of Putative Targets. To
explore the 675 putative targets of QYHJ, GO terms and
KEGG pathway enrichment analysis was performed by
Metascape. The GO enrichment analysis consists of biologi-
cal process (BP), cellular component (CC), and molecular
function (MF). GO functional biology processes include cel-
lular response to nitrogen compound, circulatory system
process, regulation of protein kinase activity, and so on

QYHJ

Active compounds

Putative targets

GO and KEGG pathway analysis

Pancreatic ductal
adenocarcinoma

PDAC targets

Overlapped genes

GEO dataset selection

GSE32676

DEGs identification

DEGs in blue module

GO and KEGG pathway analysis Survival analysis Exploration of the mRNA and protein expression Methylation analysis GSEA analysis

OB and DL filtering

SwissTargetPrediction

Metascape

GeneCards database

WGCNA GEO2R

Venn diagrams analysis

Based on multiple database

Overlapped genes in PADC by integrated bioinformatics analysis

Pathological stage
significant gene module

Figure 1: The flow diagram of network pharmacology and prognostic signatures analysis of QYHJ related targets. ADME properties of QYHJ
were firstly assessed, and then potential therapeutic targets of QYHJ against PDAC were identified through identifying OGEs with WGCNA.
Next, the GO and KEGG pathways enrichment analysis, prognostic value, expression levels, and methylation of OGEs were evaluated with
multiple databases.
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(Figure 2(a)). According to the results in Figure 2(b), the
putative targets were most significantly enriched in the neu-
ronal cell body, dendrite, receptor complex of GO cellular

component. Phosphotransferase activity-alcohol group as
acceptor, protein serine/threonine kinase activity, and tran-
scription factor binding of molecular function (Figure 2(c)).
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Figure 2: Functional annotation of active ingredients related to putative targets. (a) Enriched biological processes. (b) Enriched cellular
components. (c) Enriched molecular functions. (d) Enriched KEGG pathways.
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Additionally, KEGG pathways of the putative targets were
analyzed and shown in Figure 2(d), including Neuroactive
ligand-receptor interaction, Calcium signaling pathway,
Apoptosis, Pancreatic cancer and Central carbon metabolism
in cancer, etc. These signaling pathways involved with signal
transduction, metabolism, and angiogenesis. In general, these
biological processes and signaling pathways, which probably
related to the beneficial effects of QYHJ against PC.

3.4. Detecting Dataset Quality of GSE32676 and Clinical
Data. WGCNA was conducted on all genes of 32 samples
in GSE32676 (Figure 3). After checking the quality by
WGCNA R package, there were no samplers removed in
the sample clustering (Figure 3(a)), and we could find 2 types

of pathological tumor stage and histological grade of patients
with PDAC. Besides, to ensure a scale-free network, a soft
threshold power of β=8 (scale-free R2= 0.85) was selected
(Figure 3(b)).

3.5. Identification of the Key Module. After merging similar
clusters, we eventually identified 13 modules that contained
similar gene patterns and non-clustering genes shown in gray
(Figure 4(a)). From the heat map of module–trait relation-
ships, we found that the blue module was the most highly
correlated with the clinical-pathological stage (r = 0.76,
P= 6e-7) by using Pearson’s correlation analysis, and con-
tained a total of 928 genes, shown in Figure 4(b). Also, mod-
ules with a greater MS were significantly connected with the
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Figure 3: Clustering dendrogram and determination of soft-thresholding power in the WGCNA. (a) Clustering dendrogram of 32 samples.
(b) Analysis of the scale-free fitting indices for various soft-thresholding powers (β), and mean connectivity analysis of various soft-
thresholding powers.

6 Journal of Immunology Research



development of the disease. Figure 4(c) displays the signifi-
cance level of 13 co-expression modules associated with the
pathological stage. The MS of the blue module was signifi-
cantly higher than any other module. Moreover, scatterplots
of GS for stage vs. MM in the blue module was plotted
(Figure 4(d)). The P-value less than 1e-200 indicated that
they were highly correlated. Hence, the blue module was cho-
sen for subsequent analyses.

3.6. Identification and PPI Network Construction of OGEs.We
used the GEO2R tool to identify DEGs between 25 PDAC tis-
sue samples and 7 control samples from the GEO database,
and screened out 1151 up-regulated and 851 down-regulated
DEGs, as shown in the volcano plot in Figure 5(a). In addition,
we used the Venn diagram web-tool to cross the putative,
PDAC, immune, and blue module targets and found 18 over-
lapped DEGs (Figure 5(b)), including 12 up-regulated OGEs
and 6 down-regulated OGEs. As shown in Figure 5(c), the
18 OGEs were also visualized the expression patterns of the
32 sample datasets included in the present study, as well as
its chromosomal locations. The up-regulated genes CDK1,
PLD1, MET, F2RL1, XDH, NEK2, TOP2A, NQO1, CCND1,
PTK6, CTSE, ERBB2 were located in chromosomes 1, 2, 3,
5, 7, 10, 11, 16, 17, and 20. The down-regulated genes
PTGER3, SGK1, ODC1, SELE, IL6ST, and IL6 were distrib-
uted in chromosomes 1, 2, 5, 6, and 7. Protein interactions

among OGEs were predicted with STRING tools. As a result,
the 18 immunity-related targets of PDAC were mostly con-
nected, suggesting that QYHJ has a regulating effect on gene
network at a whole molecular level in PC (Figure 5(d)).

3.7. Functional Enrichment Analysis of OGEs. To further gain
a more in-depth comprehension of the biological behaviors
of the OGEs, functional enrichment analysis was performed
once more. The GO analysis revealed that the OGEs were sig-
nificantly related to several BP, including regulation of
growth, regulation of epithelial cell proliferation and differ-
entiation, positive regulation of cell migration and apoptotic
process, negative regulation of cell cycle (Figure 6(a)). CC
analysis showed that the OGEs were mainly enriched in the
receptor complex, nuclear chromosome, and perinuclear
region of cytoplasm (Figure 6(b)). MF analysis suggested that
the OGEs were significantly associated with protein kinase
activity, protein phosphatase binding, etc. (Figure 6(c)).
The results suggested that the OGEs were mostly involved
in pancreatic cancer, focal adhesion, PI3K-Akt signaling
pathway, and so on (Figure 6(d)).

3.8. Survival Analysis of OGEs in Patients with PDAC. To fur-
ther clarify the prognostic values of OGEs, the OS of PDAC
patients was analyzed by the Kaplan-Meier plotter. As sug-
gested in Figures 7(a)-7(r), we found that the high mRNA
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expression of CDK1, PLD1, MET, F2RL1, XDH, NEK2,
TOP2A, NQO1, CCND1, PTK6, CTSE, ERBB2, and IL6
was associated with poor overall survival rate, whlie the
other genes had no statistical influence on patients’OS. Addi-
tionally, the poor prognosis gene could be complicatedly
connected to multiple active ingredients of various herbs
(Table 4S) based on the ingredients-targets network, which
indicated that these ingredients might synergistically help to

the pharmacological action of the QYHJ for the treatment of
PDAC. Collectively, these findings concluded that CDK1,
PLD1, MET, F2RL1, XDH, NEK2, TOP2A, NQO1, CCND1,
PTK6, CTSE, ERBB2 is closely related to overall survival,
which might be vital biomarkers for the prognosis of PDAC.

3.9. Validation of up-Regulated Overlapping Genes Expression
Levels in Numerous Databases. According to the results of
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Figure 5: Identification of OGEs and construction of the PPI network. (a) The volcano plot of differentially expressed genes between cancer
and normal samples. The x-axis shows the gene expression difference by a logtransformed fold change while the y-axis shows significance by–
log10 transformed P value value. The red dot represents the up-regulated gene, while the blue dot represents the down-regulated gene. (b)
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survival analysis, we further confirmed the transcription level
of up-regulated overlapping genes between primary tumor
tissues and normal tissues in multiple databases in UALCAN
and Oncomine. It was noted that all of them were signifi-
cantly up-regulated in part, in PDAC samples compared with
normal controls in the TCGA dataset with sample types
(Figure 8(a)), and individual cancer stages (Figure 8(b)). Fur-
thermore, an overview of up-regulated overlapping genes in
all sorts of tumors showed that up-regulated overlapping
genes, except XDH, were observably overexpressed in pan-
creatic cancer (Figure 9). After studying the mRNA expres-
sion patterns of up-regulated overlapping genes in PDAC,
the protein level was also investigated through the HPA data-
base. As was shown in Figure 10, the protein expression of
up-regulated overlapping genes essentially in agreement with
transcriptional expression, with most genes have a medium
or high protein expression in pancreatic cancer tissues.
Taken together, our results showed that these up-regulated
overlapping genes might play a central role in the onset and
development of PDAC.

3.10. Relationship between Expression of up-Regulated
Overlapping Genes and Methylation.We investigated the rela-
tionship between the methylation status and the expression of
up-regulated overlapping genes to clarify underlying mecha-
nisms of aberrant elevation in PDAC tissues. The result from
DiseaseMeth version 2.0 showed that the CDK1, PLD1,
F2RL1, NEK2, TOP2A, NQO1, CCND1, PTK6, CTSE, and
ERBB2 mean methylation levels were all obstinately high in
disease state compared with normal tissues. Meanwhile, the

mean methylation levels of MET and XDH showed no statis-
tical difference (Figure 11). Then, as we observed from MEX-
PRESS analysis, multiple methylation sites in the DNA
sequences of up-regulated overlapping genes that were nega-
tively related to itself expression. (Figure S2).

3.11. Up-Regulated Overlapping Genes GSEA Analysis. To
further elucidate the potential mechanisms of up-regulated
overlapping genes in PC, GSEA was performed to explore
prominent KEGG pathways between the highly-expressed
and lowly-expressed groups. As shown in Figure 12, GSEA
analysis suggests a high expression of overlapping genes is
enriched in “cell cycle,” “P53 signaling pathway”, “PPAR sig-
naling pathway,” “RIG I like receptor signaling pathway,”
adipocytokine signaling pathway,” and “glycerophospholipid
metabolism.”

4. Discussion

Pancreatic ductal adenocarcinoma (PDAC) is considered as
a lethal disease, characterized by highly invasive and chemo-
resistant. Chemotherapeutics combined with Chinese herbal
formulations not only significantly reduce the cancer recur-
rence rate, alleviate the side effects caused by chemotherapy
drugs, and contribute to improving patient survival of post-
operative cancer patients [34, 35]. Although we found that
QYHJ significantly inhibited the proliferation, migration
and promoted apoptosis of CFPAC-1 cells in vitro and effec-
tively reversed gemcitabine resistance by regulating the
lncRNA AB209630/miR-373/EphB2-NANOG signals [12],
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underlying molecular mechanisms and biomarkers are not
fully elucidated. In this study, network pharmacology
methods were used to identify bioactive ingredients in QYHJ
and biological functions regulated by these ingredients based
on their OB, DL, and HL. We employed the TCMSP data-
base to acquire 527 potential ingredients present in QYHJ.
After screening, 67 ingredients were selected to possess suit-
able OB and DL properties. To elucidate the potential bio-
logical molecular mechanism of QYHJ, and 675 putative
targets were collected. Using the KEGG pathway enrichment
analysis, we obtained various types of signaling pathways,
including pancreatic cancer, apoptosis, and VEGF signaling
pathways. These pathways may participate in the initiation
and progression of PDAC.

With great advances that have been made in microarray
and sequencing technology, massive information on geno-
mics and proteomics has emerged. Additionally, the high-
throughput platforms and new methods provide a novel
strategy for medical oncology. WGCNA is a systems biology
method that is used to correlate the modules to clinical traits
by a soft-threshold algorithm. In the current study, we
selected the GSE32676 dataset that is only containing tumor
and adjacent normal samples from the GEO database and
identified significant modules through WGCNA. Finally,

thirteen modules were obtained from the WGCNA analysis.
Among them, the blue module was most related to the tumor
stage. After taking an intersection, we eventually obtained 18
immune-related targets with high functional significance of
QYHJ were chosen as OGEs in the significant module. Chro-
mosome mapping of the 18 OGEs shown chromosomes 1
contained most genes. Gross M et.al. demonstrated that the
loci on chromosomes 1q32.1 map to NR5A2 was susceptibil-
ity loci for pancreatic cancer [36], which is has been identi-
fied as a susceptibility gene of pancreatic cancer [37]. These
results suggest chromosome 1 plays a vital role in influencing
the pathogenesis of PDAC.

The result of GO and KEGG analysis proved that the
OGEs mainly associated with regulation of cell proliferation,
differentiation, migration, apoptotic process, negative regula-
tion of cell cycle and found that these OGEs are mainly con-
centrated upon pancreatic cancer, focal adhesion, PI3K-Akt
signaling pathway, which suggests a potential mechanism
for PDAC proliferation and metastasis. Here, we also per-
formed a survival analysis to screen up-regulated OGEs with
a significant difference. A total of 12 genes (CDK1, PLD1,
MET, F2RL1, XDH, NEK2, TOP2A, NQO1, CCND1,
PTK6, CTSE, ERBB2) were highly expressed and associated
with the depressing prognosis. Further, we determined that
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Figure 8: The mRNA expression levels of 12 overlapped DEGs in PDAC patients. (a) CDK1, PLD1, MET, F2RL1, XDH, NEK2, TOP2A,
NQO1, CCND1, PTK6, CTSE, ERBB2 expression differences between PDAC and normal tissues. (b) Expression of CDK1, PLD1, MET,
F2RL1, XDH, NEK2, TOP2A, NQO1, CCND1, PTK6, CTSE, ERBB2 in PDAC tissues with different T stages.

11Journal of Immunology Research



CDK1, PLD1, MET, F2RL1, XDH, NEK2, TOP2A, NQO1,
CCND1, PTK6, CTSE, ERBB2 were not only significantly
upregulated in PDAC tissues but also correlated positively
as well with TNM stage, suggesting that these genes may be
potential immune-related biomarkers for prognosis predic-
tion for PDAC patients.

Many studies have confirmed that cell cycle dysregula-
tion plays a vital role in types of cancers. The cell cycle-
related protein CDK1 belongs to the cyclin-dependent
kinases (CDKs) family and promotes the development of
cells from the G2 phase to the M phase [38]. To date, accu-
mulating evidence has elucidated that CDK1 is significantly
overexpressed and associated with poor outcome in gastric
and lung cancers. Consistent with published data, a study
by Piao J et.al. [39] found that the expression of CDK1 signif-
icantly increased in PDAC tissues and correlated with tumor
size, histological grade, and poor outcomes. Fortunately, we
also discovered a similar result, and CDK1 interacts with
multiple ingredients for QYHJ. Hence, QYHJ might treat
PDAN by regulating the expression of CDK1. PLD1, a cen-
tral enzyme, was regulated lipid metabolism by catalyzing
the hydrolysis of phosphatidylcholine. Several studies have
indicated that PLD1 contributed to the invasion, metastasis,
and angiogenesis of various human tumors [40]. Consis-
tently, Hu and colleagues showed that PLD1 was increased

in PDAC and directly associated with poor prognosis and
vascular invasion [41]. Similarly, we also found MET, the
receptor of hepatocyte growth factor, was highly-expressed
and closely related to short survival time, consistent with
the study by Zhou J et.al [3]. Most importantly, Lux A et.al
[42]. Further elucidated that MET-positive patients showed
a markedly unsatisfactory survival time, and it can be served
as a negative prognostic factor. F2RL1 encoded the PAR2.
The PAR2 is a G protein-coupled receptors, which highly
expressed in the pancreas and contributed to accelerating
tumor growth in pancreatic cancer [43]. Besides, Shi K et.al
[44]. found that the orthotopically growing primary tumors
were restricted by knocking down F2RL1. NEK2 was proved
to be overexpressed in PDAC tissues and significantly related
to histological differentiation, lymph node metastasis, and
tumor stage [45]. High expression of TOP2A was signifi-
cantly associated with tumor metastasis and shorter survival
in pancreatic cancer patients, and knockdown of TOP2A
inhibited proliferation and migration in Panc-1 and CaPan-
1 cell lines [46]. It was showed that NQO1 overexpression
may be identified as an independent prognostic biomarker
in PDAC, and connected with the tumor-node-metastasis
(TNM) stage [47]. Moreover, recent studies have revealed
that CCND1 was up-regulated in pancreatic cancer tissues
and validated as a direct binding target of miR-720/miR-
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584 to inhibit cell proliferation and invasion [48, 49]. Besides,
silencing PTK6 significantly attenuated cellular migration
and invasion in pancreatic cancer [50]. And CTSE may be a
novel marker for a definitive diagnosis of PDAC with a
higher detection frequency [51]. Meanwhile, oncogenic
ERBB2 combined with KRAS mutations synergistically
improve the progression of PDAC [52]. As for the XDH gene,
it was not reported to participate in the development of
PDAC. Further study should be needed. Our findings once
again suggested that these genes considered to be good for
the diagnosis of PDAC.

Further, we also found that CDK1, PLD1, F2RL1, NEK2,
TOP2A, NQO1, CCND1, PTK6, CTSE, and ERBB2 were
hypomethylated in PDAC samples compared with homolo-
gous normal samples, which could be the potential mecha-
nism for the adamant up-regulation of these 10 genes in

PDAC. To further investigate the up-regulated overlapping
gene’s biological events, we performed the GSEA for each
gene. The results of GSEA suggested that the Cell cycle,
P53, and RIG I like receptor signaling pathways were associ-
ated with the high-expression samples of these genes, indicat-
ing the genes have an important role in PDAC progress.

5. Conclusions

The present study assessed underlying immune-related tar-
gets of QYHJ by combining WGCNA and bioinformatics,
and we identified multiple strongly up-regulated genes
(CDK1, PLD1, MET, F2RL1, XDH, NEK2, TOP2A, NQO1,
CCND1, PTK6, CTSE, ERBB2) associated with the poor
prognosis of PDAC due to its DNA hypomethylation level.
However, further studies need to be done in PDAC cells to
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assess their clinical value as biomarkers and therapeutic
targets accurately.
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